Force of causality is additional force, acting along axis of rotation in the gyro excited by causal-effect interaction. This force is always twin, if force of causality $+\Delta F$ acts on the effect, then $-\Delta F$ acts on the cause, as a result the momentum of the closed system is conserved (but the angular momentum may not be conserved, that allows to measure ΔF). ΔF determines through linear velocity of rotation of the gyro u around an axis \vec{i} , course of time c_2 , initiating unelastic force F acting along an axis \vec{i} (\vec{i} is ort of causal-effect connection) and angle θ between \vec{i} and \vec{j} :

$$\Delta \vec{F} = \mp \vec{j} \frac{u}{c_2} |\vec{F}| \cos \theta$$

The force of causality is nonconservative (rot $\Delta \vec{F} \neq 0$, div $\Delta \vec{F} = 0$), it rouses deformation of the gyro and changes its potential energy.

S.M.Korotaev