Динамическая теория любого фрагмента реальности обязательно включает ряд компонентов, разработка которых осознанно или чаще неявно выступает этапами создания теории.
О-компонент состоит в описании идеализированной структуры элементарного объекта теории.
S-компонент заключается в перечислении допустимых состояний объектов теории. Другими словами, о компоненте S говорят как о пространстве состояний исследуемой системы.
С-компонент фиксирует способы изменчивости объектов и исправляет чрезмерную идеализацию, связанную с выделением объектов, поскольку в мире нет объектов, а есть лишь процессы, абстракцию от которых составляют представления об объектах. С-компонент вводит в теорию процессы, изменчивость, “предвремя”.
Вместо строгих дефиниций приведу примеры элементарных объектов и их изменчивости.
В классической механике элементарными объектами являются материальные точки вместе с их положениями и скоростями в физическом пространстве. Например, планеты Солнечной системы. Изменчивость задается траекториями точек. Пространство состояний есть шестимерное фазовое пространство — произведение трехмерного евклидова пространства на трехмерное пространство скоростей.
В квантовой механике элементарные объекты — амплитуды вероятностей состояний микрообъектов (например, энергетических состояний атома). Изменчивость в пространстве состояний задается траекториями векторов в бесконечномерном гильбертовом пространстве.
В теории ядра элементарные объекты — нуклоны и некоторые другие элементарные частицы, обладающие специфическим набором квантовых чисел. Изменчивость — взаимные превращения частиц и излучений. Пространство состояний ограничивается допустимыми согласно законам сохранения комбинациями квантовых чисел для совокупностей превращающихся частиц.
В эмбриологии роль элементарного объекта играет живая клетка, а роль изменчивости — процесс деления клеток. Пространство состояний описывается морфологическими признаками архетипов зоологических систематик.
В экологии сообществ объект — популяция организмов. Изменчивость складывается из процессов рождения и гибели особей. Пространство состояний — набор всевозможных векторов (n1,n2,...,nw), где ni — численность популяции вида i, входящего в сообщество. Набор ограничен доступными организмам ресурсами среды.
Т-компонент теории состоит во введении часов и параметрического времени в описание функционирования систем. Параметрическое время предлагается понимать как образ меняющихся объектов при отображении процесса изменчивости в линейно упорядоченное, обладающее метрикой (как правило, числовое) множество. Обычно изменчивость избранного объекта принимается за эталон, и с ее помощью измеряются иные изменчивости. Часы и есть естественный объект, изменчивость которого служит эталоном и операциональным способом устройства нужного отображения.
Традиционные часы естествознания основаны на физических процессах – конструкциях с упругими или гравитационными маятниками; астрономических системах, фиксирующих вращение Земли вокруг оси или вокруг Солнца; цезиевых или иных источниках электромагнитных колебаний; интенсивно обсуждающемся в последние годы пульсарном эталоне сверхстабильных периодов; радиоактивном распаде вещества. Вот как А.А.Фридман (Мир как пространство и время. М. 1966. С.50-53) описывает появление физических часов: “Сопоставим ... каждой физической точке М пространства определенное основное движение и назовем часами данной точки М инструмент, показывающий длины дуг t, проходимых материальной точкой по траектории в основном движении... Величину t ... назовем физическим местным временем точки М...
Рассмотрим прежде всего звездное время... За основное движение примем движение конца стрелки определенной длины, направленной из центра Земли на какую-либо звезду. Звездное время tЗ будет длиной пути, описываемого концом указанной стрелки. Звездное время tЗ будет одно и то же во всех точках пространства, это будет универсальное время... Рассмотрим теперь другое время, которое мы для краткости назовем гравитационным временем... Положим, что материальная точка падает в постоянном поле тяготения, и выберем это движение за основное; часы покажут длину пути tГ, пройденную этой точкой. Эта величина и будет гравитационным временем... по отношению к гравитационному времени звезды движутся неравномерно... Введем ... время маятниковое. Построим значительное количество одинаковых часов с маятником и примем за основное движение конец секундной стрелки часов с маятником, помещенным в этой точке. Путь, пройденный концом секундной стрелки наших часов с маятником от некоторой начальной точки, обозначим tМ и назовем маятниковым временем... в отличие от универсальных звездного или гравитационного времен маятниковое время будет местным и на разных широтах будет различным.”
Параметризация изменчивости с помощью физических часов пронизывает почти все контролируемое сознанием человека бытие — науку, культуру, быт... Однако изменения, происходящие в мире, не сводятся к механическим перемещениям: существуют, например, химические превращения веществ, геологическая летопись Земли, развитие и гибель живых организмов и целых сообществ, нестационарность вселенной и социогенез... Не правильнее ли признать, что часы, которые мы устанавливаем в системах отсчета, чтобы описать изменчивость природных объектов, могут быть различными? Можно ли при этом утверждать, что одни из этих часов, например, физические, — это ”хорошие” часы, а непохожие на них часы — ”плохие”?
Такая оценка была бы понятной, если бы относилась, например, к Галилею, пытавшемуся установить закономерность механического движения маятника — храмовой люстры, пользуясь “физиологическими часами” — ритмом собственного сердца.
Еще А. Пуанкаре подчеркивал (H. Poincare. La Mesure du Temps// Revue de Metaphysique et de Morale. 1898. V.6. Pp.1-13), что не существует способа измерения времени, который был бы более правильным, чем другой. Тот, который принимается, лишь более удобен. Сравнивая часы, мы не имеем права сказать, что одни из них идут хорошо, а другие плохо, мы можем только сказать, что предпочтение отдается показаниям одних из них. В нефизических областях естествознания все чаще возникает необходимость в часах, которые не должны быть синхронизированы с физическими эталонами, но оказываются более удобными и адекватными, чем последние, при описании нефизических форм движения.
В эмбриологии развитие различных организмов эффективно описывается с помощью единицы биологического времени, равной интервалу между одноименными фазами делений дробления. Эта единица зависит от температуры и видоспецифична, поэтому закономерности развития, описываемые в этих единицах, не обнаруживаются при использовании шкалы астрономического времени. Популяционное время в экологии, этнографии, генетике удобно измерять количеством сменившихся поколений. Хроностратиграфическая шкала геологического времени образована последовательностью горных пород со стандартизированными точками, выбранными в разрезах с максимально полными сохранившимися пограничными областями. Для стратиграфии, базирующейся на палеобиологической основе, длительности геологических эпох Земли могут измеряться вертикальной толщиной слоев, в которых встречаются организмы ископаемых видов. В модели психологического времени длительности промежутков между значимыми для личности событиями измеряются количеством межсобытийных связей.
L-компонент теории представляет собой формулировку закона изменчивости, выделяющую реальное обобщенное движение объектов в пространстве состояний из всех возможных движений (термин “обобщенное движение” употреблен как синоним изменчивости объектов).
В механике, теории поля такой закон чаще всего имеет вид “уравнений движения”, которые являются постулатами теории, например, уравнения Ньютона для движений макрообъектов с небольшими скоростями и в несильных полях или уравнения Шредингера в нерелятивистской квантовой механике, уравнения Максвелла, Эйнштейна, Дирака и т.д. Закон может быть сформулирован и не в виде уравнений, а, скажем, в форме экстремального принципа, например, принципа минимального действия (реальна траектория, для которой интеграл по времени от разности кинетической и потенциальной энергий минимален). Формулировки закона изменчивости в виде уравнений движения и в виде экстремальных принципов равносильны. Для “вывода” функционалов, используемых в экстремальных принципах, нередко привлекают соображения, основанные на принципах инвариантности пространственно-временных или полевых переменных.
Если известен вид функционала действия исследуемой системы, то динамические уравнения, (например в квантовой механике), могут быть получены методом Фейнмана с помощью интегрирования по траекториям. Принцип наименьшего действия оказывается частным случаем принципа Фейнмана.
Нетрадиционный способ получения законов изменчивости, в частности, и в форме уравнений движения Ньютона, Дирака, возникает в теории физических структур и бинарной геометрофизике. Формально законы выглядят как требование равенства нулю специально сконструированного определителя Грама.
Для многих областей естествознания (в частности, в приводившихся примерах для теории ядра, эмбриогенеза, экологии) формулировка законов изменчивости составляет цель построения теории. Эта цель недостижима без корректного решения классов проблем, составляющих разработку О-, С-, S- и Т-компонентов теории. В методологии естествознания наименее разработаны С- и Т-компоненты. Существует тесная взаимосвязь между выбором этих компонентов и способом получения L-компонента. Закон движения это есть описание изменчивости исследуемого объекта с помощью изменчивости эталонных часов, поэтому от степени адекватности выбора часов исследуемым процессам может зависеть способность обнаружить закон изменчивости. Законы движения влияют на способы измерения времени в тех областях, где Т- и L-компоненты теории согласованы (Время и современная физика, 1970), например: одновременность двух событий или порядок их следования, равенство двух длительностей должны определяться таким образом, чтобы формулировка естественных законов была бы настолько простой, насколько это возможно (Poincare, 1898).
По-видимому, трудности получения уравнений движения во многих областях науки связаны как раз с несогласованностью физических способов измерения времени с нефизической природой исследуемых закономерностей.
Наконец, I-компонент теории составляет набор интерпретирующих процедур. Во-первых, это процедура сопоставления формальным, как правило, математическим конструкциям теории абстрактных понятий предметной реальности, во-вторых, — правила соотнесения предметных понятий с экспериментально измеряемыми величинами.
Так, аппарат квантовой механики в качестве формальных объектов работает с комплекснозначными волновыми функциями и действующими на них операторами. Переход к понятиям макрофизической реальности осуществляется постулируемыми правилами: квадрат волновой функции есть вероятность обнаружить микрочастицы в определенной точке пространства и времени, а собственное значение оператора есть количественное значение соответствующей физической характеристики. Для наблюдения вероятностных распределений требуются, например, интерференционные эксперименты с прохождением частиц через препятствия. Энергетические характеристики атома определяются через расстояние между спектральными линиями в экспериментах по испусканию или поглощению излучения атомами.
I-компонент — обязательная составная часть теории. Именно интерпретирующие процедуры превращают формальную теоретическую схему в науку о реальности. Возможности развития I-компонента теории, особенно в части экспериментальных идентификаций, зависят не только, а порою не столько от достоинств теорeтической схемы и ее создателей, сколько от “суммы технологий”, достигнутой всей цивилизацией.
Гипотезе Демокрита об атомном строении вещества понадобились тысячелетия, чтобы превратиться в верифицированную теорию.
Огромный накопленный опыт рентгеноструктурного анализа оказался необходимым, чтобы гипотеза о дискретном наследственном веществе почти через сто лет после возникновения оформилась в конструктивную модель двойной спирали дезоксирибонуклеиновой кислоты.
Интерпретационные процедуры крайне неоднозначны. Разработка I-компонента часто оказывается наиболее трудным и самым уязвимым этапом создания работающей теории.
А.П.Левич